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Abstract 

The study employed the ARDL model and the ECM technique to analyze the long-run and short-run 

relationships between climate change, demographic variables, and food security, as proxied by cereal 

crop yields, from 1981 to 2021. The results of the ARDL model indicate a long-run equilibrium 

relationship between climate change, demographic variables, and crop yields (millet, rice, and sorghum), 

with inconclusiveness for maize and wheat crop yields. The former results suggest moving together and 

maintaining a stable relationship, even if they deviate in the short run, in Nigeria, as revealed by the ECM 

results. Given the long-run equilibrium relationship, a multi-faceted approach to adaptation and 

mitigation in agriculture is crucial to ensure food security and resilience. The study recommendations 

include developing agriculture-specific adaptation policies, breeding climate-resilient crop varieties, 

improving land and water management, and understanding the specific impacts of climate change on local 

agricultural systems. In the long run, the results revealed both positive and negative influences of 

population density and natural resource rents on maize yields, as well as a positive influence of CO2 

emissions and temperature, combined with natural resource rents, on sorghum yields. Additionally, 

population density was found to have a negative impact on sorghum production. However, CO2 emissions 

have a negative influence on wheat yields. The study recommends focusing on adapting to the changes 

and mitigating the impacts of climate and demographic pressure on cereal crop yields. This includes 

developing climate-resilient crop varieties, implementing effective crop management practices, and 

supporting farmers through capacity building and policy frameworks. 

 

Keywords: Climate Change, Demographic Pressure, Food Security 

JEL Classification:   J11, Q18, Q54

1.0  Introduction 

According to the Global Hunger Index's 2019 report on food insecurity, 8.4% of the world’s 

population was undernourished in 2019; by 2020, this had increased to 9.9% (Grebmer, et al., 

2021). Approximately one-third of the world’s population (2.37 billion) lacked year-round 

access to adequate food in 2020, representing a 320 million increase from 2019 to 2020. 

Although it is too early to attribute these phenomena to anthropogenic climate change, 

significant changes in temperature and precipitation resulting from the increase in greenhouse 

Contribution to/Originality Knowledge  
1. The study investigates whether climate Change (CO2 emissions, precipitation, and temperature) and Demographic Pressure 

(population density and natural resource rents) Matter for Food Security, proxied by cereal crop yields, in Nigeria. 

2. The study estimates the degree of response of cereal crop yields to changes in climate Change (CO2 emissions, precipitation, 

and temperature) and Demographic Pressure (population density and natural resource rents).    
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gas concentrations could seriously disrupt agricultural production systems and jeopardize 

global food security (Suryanto et al., 2023). 

Climate change significantly impacts agricultural productivity through several mechanisms, 

including rising temperatures, altered rainfall patterns, and increased frequency of extreme 

weather events  (Annappa et al., 2023). Therefore, the impacts of climate change on agriculture 

can have significant consequences for food security, potentially leading to increased food 

prices and reduced access to food for vulnerable populations (Vijai et al., 2023). 

Simultaneously, growing populations increase the demand for food, straining resources and 

making it harder to meet the needs of everyone, especially in areas already struggling with 

food insecurity.  

With over 220 million people, Nigeria is the most populated country in Africa and the sixth in 

the world (WFP, 2025). Climate change and demographic pressure are, presumably, threats to 

food security, particularly in regions like Sub-Saharan Africa, including Nigeria. Cereals are 

by far the most important source of food in most of these countries (Alexandratos, 2005). 

Nigeria faces significant food security challenges, with increasing numbers of people 

experiencing acute hunger and malnutrition. Rising inflation, coupled with the impact of the 

climate crisis and conflict, are major drivers of this problem. The country's domestic food 

production consistently lags behind national demand, and a large portion of the population 

lives below the poverty line, limiting their ability to access food (WFP, 2025).  

At the same time, the rapid population growth in Nigeria poses a significant threat to food 

security, as the rate of population increase outpaces agricultural production. The average 

agriculture output growth between 2011 and 2020, which stood at 3.5% against the backdrop 

of over 2.6% population growth rate, accounts for the present food insecurity in Nigeria 

(Aiyedogbon et al., 2022). Nigeria is the most populous country in Africa and the sixth most 

populous globally. It is one of Africa's most densely populated countries, with approximately 

218.5 million people in an area of 923,768 km2 (356,669 sq mi). In 2022, the population 

density reached 245.01 inhabitants per square kilometer. This means that, on average, a 

significant number of people live in each square kilometer of land in Nigeria. With this large 

number of people living in a relatively small area, Nigeria is one of Africa's most densely 

populated countries (UN, 2024).  

Population density can significantly impact food security, as higher densities can lead to 

increased demand for food and resources, potentially straining food production and availability 

(Ricker-Gilbert et al., 2014). Indeed, cereal crops play a vital role in global food security, 

providing a significant portion of the world's calorie and protein intake (Roy et al., 2024). 

Increased cereal yields are crucial for meeting the growing global population's needs and 

ensuring food availability, especially in regions where cereals are staple foods. However, 

factors like climate change and demographic pressure can impact cereal production and, 

consequently, food security.  

In Nigeria, cereal crops are crucial for food security. Cereals are a major contributor to 

agriculture and food security in Nigeria, accounting for between 5 and 60% of subsistent 
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farmers' output, providing income, and forming the basis of many households' diets in rural 

and urban areas (Ogah et al., 2023). This study examines the impact of climate change and 

demographic pressure on food security in Nigeria. To achieve this, the remainder of the study 

is organised as follows. Section 2 presents the literature review, which encompasses the 

received knowledge, while Section 3 describes the data and methodology. Section 4 presents 

the empirical results and discussion. Finally, Section 5 concludes and provides 

recommendations. 

2.0 Literature Review 

2.1 Conceptual Literature 

Climate change: It has been defined as a change in climate that is attributed directly or 

indirectly to human activity, altering the composition of the global atmosphere, and which is 

in addition to natural climate variability, observed over comparable periods (Misiou & 

Koutsoumanis, 2022). However, since the 1800s, human activities have been the primary 

drivers of climate change, primarily due to the burning of fossil fuels, including coal, oil, and 

natural gas. Burning fossil fuels generates greenhouse gas emissions that act like a blanket 

wrapped around the Earth, trapping the sun’s heat and raising temperatures (UN, 2025a). Fossil 

fuels are by far the largest contributor to global climate change, accounting for over 75 percent 

of global greenhouse gas emissions and nearly 90 percent of all carbon dioxide emissions (UN, 

2025b). Climate change is affecting human lives and health in numerous ways. It threatens the 

essential ingredients of good health and has the potential to undermine decades of progress in 

global health in a myriad of ways, including by leading to death and illness from increasingly 

frequent extreme weather events, such as heatwaves, storms and floods, the disruption of food 

systems, increases in zoonoses and food-, water- and vector-borne diseases, and mental health 

issues (WHO, 2025). 

Demographic pressure: It refers to the strain or impact on resources, infrastructure, and social 

systems that arises from population characteristics and dynamics, such as high growth rates, 

skewed age distributions, or competition for scarce resources. It can manifest in various ways, 

including increased demand for food, water, housing, and healthcare, as well as social and 

economic challenges like unemployment and competition for land (FSI, 2025). It can also 

contribute to environmental degradation, such as deforestation, resource depletion, and 

increased vulnerability to extreme weather events (Didenko et al., 2017).  

Food Security: The FAO and UN defined food security as a situation that exists when all 

people, at all times, have physical, social, and economic access to sufficient, safe, and 

nutritious food that meets their dietary needs and food preferences for an active and healthy 

life (Odet et al., 2022). It ensures that all people, at all times, have access to sufficient, safe, 

and nutritious food. This access must be consistent, meeting dietary needs and preferences for 

an active and healthy life. It is a state where food is available, accessible, and utilized 

effectively, with a stable supply.  Essentially, it is characterized by four main factors: food 

availability, accessibility, utilization, and stability at the different levels of national, household, 

individual, and temporal dimensions, affecting all levels, respectively. Climate change and 

demographic pressure pose significant threats to global food security, affecting agricultural 
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production and distribution. Research highlights the need for adaptation strategies, improved 

awareness, and support for vulnerable populations, especially in Sub-Saharan Africa and South 

Asia, which are heavily affected by climate-related food insecurity. Food security theory 

broadly focuses on ensuring everyone has access to sufficient, safe, and nutritious food. This 

includes both physical and economic access to meet dietary needs and preferences for a 

healthy, active life. The theory emphasizes the importance of availability, access, utilization, 

and stability in achieving food security. While neo-Malthusian and access theory suggest that 

population growth may outpace food production, leading to food shortages (Aliyu et al., 2021), 

and highlight the importance of access to resources (Ribot & Peluso, 2003), Climate change, 

natural disasters, and land degradation affect food production and availability (Simelane & 

Worth, 2020). Research is increasingly moving towards integrated approaches that consider 

the complex interplay of climate change, demographic pressure, and socio-economic factors 

to develop more effective solutions. It highlights the need for adaptation strategies, improved 

awareness, and support for vulnerable populations, especially in Sub-Saharan Africa and South 

Asia, which are heavily affected by climate-related food insecurity. Research consistently 

demonstrates that climate change poses significant threats to food security, primarily through 

its impacts on agricultural production, access to food, and food stability.  

2.2 Empirical Literature 

Mekonnen et al. (2021) analyzed local climatic changes, household food security status, 

climate-related causes of food insecurity, food security determinants, and the adaptation 

strategies employed by local farmers, utilizing three decades of meteorological data from a 

total of 185 farmers. The logistic regression model employed showed that age, family size, and 

the amount of cultivated land and rainfall were the significant factors influencing household 

food security status. While Mulugeta and Dori (2017) reviewed the impact of climate change 

on crop yields with special reference to food security in Ethiopia, Kolawole and Timothy 

(2018) highlight the various effects of climate change on food availability for Nigeria's teeming 

population to ensure food security. Similarly, Naheed (2023) attempted to discuss some critical 

issues relevant to the four dimensions of food security and to provide broader perspectives on 

climate change and its impacts on the food system, food security, and human well-being. 

Mariem et al. (2021), using a meta-analysis of existing literature, identified that elevated CO2 

concentration ([CO2]), elevated temperature, and drought stress affect C3 crop production and 

quality. Belloumi (2014) investigates the effect of climate variables (precipitation and 

temperature) on food security indicators from 1961-2011 for 10 Eastern and Southern African 

countries by estimating fixed effects models. The results suggest that ESA countries will 

experience unstable rainfall and increased temperatures, which could have adverse effects on 

food production, malnutrition, and mortality rates.  

On the contrary, Aiyedogbon et al. (2022) examined the impact of population growth on food 

security in Nigeria with data covering 1986- 2020. It employed the Cochrane-Orcutt iterative 

method on ordinary least squares (OLS) to analyze agricultural output as a function of 

population growth rate. It examined the impact of population growth and agricultural 

productivity on economic growth. The study results revealed that population growth had a 

significant impact on agricultural output, and that economic growth was significantly and 
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positively responsive to changes in agricultural output and the population growth rate in 

Nigeria. Svizzero (2016) demonstrates that significant changes in population pressure are only 

temporary and have asymmetric effects on the behaviors of hunter-gatherers. Hall et al. (2017) 

consider the potential impact of future population growth and climate change on food security 

in Africa, looking ahead to 2050 using the FEEDME (Food Estimation and Export for Diet 

and Malnutrition Evaluation) technique in 44 African countries. The results indicate that 

projected rapid population growth will be the leading cause of food insecurity and widespread 

undernourishment across Africa.   

3.0 Data and Methodology 

3.1 Data Description and Source 

Climate change and demographic pressure threaten food security, particularly in Sub-Saharan 

Africa, including Nigeria, where farming families are disproportionately poor and vulnerable. 

Climate change impacts agricultural productivity through changes in temperature and rainfall 

patterns, which in turn affect crop yields. Simultaneously, growing populations increase the 

demand for food, straining resources and making it harder to meet the needs of everyone, 

especially in areas already struggling with food insecurity. This study investigates whether 

climate change variables and demographic pressure matter for food security in Nigeria or not. 

In whatever case, more recent developments emphasize the importance of sustainability, which 

may be considered as the long-term time dimension to food security. To achieve the objective, 

the study employed time series data ranging from 1981 to 2021 with the following descriptions.   

Table 1: Data Description and Source 

Variable Notation Description Data source 

Corn CC The amount of maize (or corn) harvested per unit 

area of land, typically measured in kilograms or 

metric tons per hectare. 

Food and Agriculture 

Organization of the United 

Nations (2025)  

Millet ML The amount of millet grain harvested per unit of 

land, typically measured in kilograms per 

hectare (kg/ha) or metric tons per hectare.  

Food and Agriculture 

Organization of the United 

Nations (2025)  

Rice RC The amount of rice produced per unit land area 

(typically measured in kilograms per hectare) in 

Nigeria. 

Food and Agriculture 

Organization of the United 

Nations (2025)  

Sorghum SG The amount of sorghum grain produced per unit 

area (e.g., kilograms per hectare or tons per acre) 

Food and Agriculture 

Organization of the United 

Nations (2025)  

Wheat WH The amount of wheat harvested per unit of land 

area, typically measured in kilograms per hectare 

or metric tons per hectare.  

Food and Agriculture 

Organization of the United 

Nations (2025)  

Carbon 

dioxide 

emission 

CO2 The release of carbon dioxide (CO2), a major 

greenhouse gas, into the atmosphere, primarily 

from human activities like burning fossil fuels 

and industrial processes, contributes to climate 

change and global warming.  

Global Carbon Budget (2024). 

US Energy Information 

Administration (2023), 

Energy Institutes Statistical 

Review of World Energy 

(2024) 

Precipitation PR Any product of atmospheric water vapor 

condensation that falls from clouds due to 

gravitational pull. The primary forms of 

precipitation include drizzle, rain, Rain and snow 

mixed, snow, ice pellets, graupel, and hail. 

Ember (2024), Energy 

Institutes Statistical Review of 

World Energy (2024) 
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Temperature TE The measure of hotness or coldness expressed in 

terms of any of several scales, including 

Fahrenheit and Celsius, Kelvin, and Rankine 

scales. 

Ember (2024), Energy 

Institutes Statistical Review of 

World Energy (2024) 

Population 

Density 

PD It measures how crowded a place is by indicating 

the number of people living in a specific area, 

such as a square kilometer or square mile. 

HYDE (2023); Gapminder 

(2022); UN World Population 

Prospects (2024); UN FAO 

(2024)  

Natural 

Resources 

Rents 

RR Total natural resources rents are the sum of oil 

rents, natural gas rents, coal rents (hard and soft), 

mineral rents, and forest rents. Therefore, the 

economic value is derived from extracting and 

selling natural resources. The estimates of 

natural resources rents are calculated as the 

difference between the price of a commodity and 

the average cost of producing it. They are often 

expressed as a percentage of a country's GDP.  

World Bank based on data 

from multiple sources (2025). 

World Bank staff estimates 

based on sources and methods 

described in the World Bank's 

The Changing Wealth of 

Nations. 

Source: Author’s compilation 

3.2 Model Specification 

Once stationarity is confirmed (or achieved through transformations like differencing), the next 

step is to specify the econometric model or models used to analyze the data. This involves 

choosing the appropriate model structure, including the dependent and independent variables, 

and any potential interactions or lags. To model the relationship between crop yields: Maize, 

millet, rice, sorghum, and wheat; the climate change variables, which include CO2 emissions, 

precipitation, temperature, population density, and natural resources rents as the demographic 

pressure variables, are specified in both functional and econometric model specifications 

presented below:  

Model 1:  CC = f(CO2, PR, TE, PD, RR) 

𝐶𝐶𝑡 = 𝛽0 + 𝛽1𝐶𝑂2𝑡
+ 𝛽2𝑃𝑅𝑡 + 𝛽3𝑇𝐸𝑡 + 𝛽4𝑃𝐷𝑡 + 𝛽5𝑅𝑅𝑡 + 𝜀𝑡 . (1) 

Model 2:  ML = f(CO2, PR, TE, PD, RR) 

𝑀𝐿𝑡 = 𝛿0 + 𝛿1𝐶𝑂2𝑡
+ 𝛿2𝑃𝑅𝑡 + 𝛿3𝑇𝐸𝑡 + 𝛿4𝑃𝐷𝑡 + 𝛿4𝑅𝑅𝑡 + 𝜔𝑡 . (2) 

Model 3:  RC = f(CO2, PR, TE, PD, RR) 

𝑅𝐶𝑡 = 𝜆0 + 𝜆1𝐶𝑂2𝑡
+ 𝜆2𝑃𝑅𝑡 + 𝜆3𝑇𝐸𝑡 + 𝜆4𝑃𝐷𝑡 + 𝜆5𝑅𝑅𝑡 + 𝜈𝑡 . (3) 

Model 4:  SG = f(CO2, PR, TE, PD, RR) 

𝑆𝐺𝑡 = 𝜓0 + 𝜓1𝐶𝑂2𝑡
+ 𝜓2𝑃𝑅𝑡 + 𝜓3𝑇𝐸𝑡 + 𝜓4𝑃𝐷𝑡 + 𝜓5𝑅𝑅𝑡 + 𝜇𝑡 . (4) 

Model 5:  WH = f(CO2, PR, TE, PD, RR) 

𝑊𝐻𝑡 = 𝜉0 + 𝜉1𝐶𝑂2𝑡
+ 𝜉2𝑃𝑅𝑡 + 𝜉3𝑇𝐸𝑡 + 𝜉4𝑃𝐷𝑡 + 𝜉5𝑅𝑅𝑡 + 𝜏𝑡 . (5) 

From equations (1), (2), (3), (4), and (5), 𝛽0, 𝛿0, 𝜆0, 𝜓0, 𝑎𝑛𝑑 𝜉0 represent the intercept of the 

corn, millet, rice, sorghum, and wheat yields, respectively. On the other hand, β, δ, λ, ψ, and ξ 

represent the coefficients of the respective models. 
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3.3  Preliminary Estimations 

3.3.1  Unit Root Test 

Time series data is said to be stationary when its value tends to revert to its long-run average 

value, and its other properties, such as the variance and covariance of the data series, are not 

affected by changes in time (Shrestha & Bhatta, 2018). This study uses the Augmented Dickey-

Fuller (ADF) test. While other stationarity tests, such as the Phillips-Perron (PP) test, exist, the 

ADF Test is popular due to its robustness in addressing higher-order autocorrelation issues by 

incorporating lagged differences terms in the model, which effectively controls for 

autocorrelation in the residuals. This robustness is crucial in ensuring that the test is not biased 

by residual autocorrelation, which can distort test results and falsely suggest non-stationarity 

when a series might be stationary (Lee, 2025). As a result, it is a preferred method in various 

economic and financial applications. Let us assume we have a series yt, the ADF model tests 

the unit root as follows: 

∆𝑦𝑡 = 𝜇 + 𝛿𝑦𝑡−1 + ∑ 𝛽𝑖∆𝑦𝑡−𝑖

𝑘

𝑖=1

+ 𝜀𝑡 

Where: 

𝛿 =∝ −1  

∝= 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑦𝑡−1  

∆𝑦𝑡 = 𝐹𝑖𝑟𝑠𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑦𝑡 (𝑖. 𝑒. 𝑦𝑡 − 𝑦𝑡−1) 

3.3.2  Optimal Lag Length Determination 

Determining the appropriate lag order in ARDL models can be a challenging task. Too many 

lags can lead to overfitting and instability, while too few lags can result in misspecification of 

the dynamic relationships. This study uses the automatic lag selection features for ARDL 

models to determine the optimal number of lags for the cereal crop yields, the dependent 

variables, and the climate and demographic pressure variables that constitute the independent 

variables. This shall be achieved using information criteria, which choose the lag order that 

minimizes the residual sum of squares. The information criteria ensure a model that balances 

parsimony (fewer lags) and can capture the dynamic relationships between variables.   

3.3.3  Log Transformation 

Prior to using the time series estimation techniques, the variables were log-transformed to 

stabilize variance, linearize relationships, and improve the interpretability of model results. 

This is because many economic variables exhibit heteroscedasticity (non-constant variance) 

over time. Taking the logarithm of such variables can compress larger values more than smaller 

ones, leading to a more constant variance and improving the reliability of statistical inferences. 

Essentially, log transformations can convert non-linear relationships between variables into 

linear ones, making them suitable for estimation with linear models 

3.4  Model Estimation Techniques 
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The model parameters were estimated using the Autoregressive Distributed Lag Model 

(ARDL) approach. The ARDL (Autoregressive Distributed Lag) model offers several 

advantages over conventional cointegration tests like the Engle-Granger and Johansen 

maximum likelihood tests, particularly its ability to handle variables with mixed orders of 

integration (I(0) and I(1)), its validity in small samples, and its simultaneous estimation of both 

short-run and long-run relationships without requiring pre-testing for unit roots (Menegaki, 

2019). It is complemented by the Canonical Cointegrating Regression (CCR) method. These 

will help identify the presence of long-run relationships between the yields of cereal crops and 

the climate change and demographic pressure variables. And, in quantifying the response of 

the yields of cereal crops to climate change and demographic pressure, particularly when the 

relationships become stable and cointegrated over time. In the context of cointegration 

analysis, Canonical Cointegrating Regression (CCR) is generally considered a better estimator 

than Fully Modified Ordinary Least Squares (FMOLS) and Dynamic Ordinary Least Squares 

(DOLS) because it tends to have less bias.  

3.4.1  The ARDL Approach Specification  

The ARDL approach allows the inclusion of other models with dissimilar variables that take a 

diverse optimal number of lags. These problems lead to the direct estimation of the long-run 

parameters using unrestricted error correction models (UECM) that specify the inclusion of 

dynamics (Olokoyo et al., 2009). When an unrestricted dynamic model includes both lagged 

and current values of dependent and independent variables, it becomes an autoregressive 

distributed lag model. The bounds-testing approach, together with the ADRL modeling 

approach to co-integration analysis developed by Pesaran et al. (2001), involves an ordinary 

least squares estimation of an ECM of the following form: 

t

q

i

ti

p

i

tittt eXYXYY  












1

1

1

1

1

112110       (7) 

In this expression, Δ is the first difference operator, 0 is the constant, tY  is the dependent 

variable (output), tX  is the independent variable, te  is the error term, p and q  are the 

maximum lag orders, 1  is the long-run relationship (elasticities) among the variables, and βi 

is the short-run relationship among the variables. One of the main benefits of expanding the 

ARDL is the existence of a long-run level relationship in an ECM framework between the 

dependent variable, tY  , and the independent variable, tX , that can be tested when it is not 

known whether the underlying independence is stationary, non-stationary, or mutually co-

integrated with the ARDL model (Odhiambo, 2009). 

In the ARDL model framework, interpreting cointegration results primarily involves 

examining the F-statistic and its comparison to critical bounds.  If the calculated F-statistic 

exceeds the upper critical bounds, it suggests cointegration, indicating a stable long-run 

relationship between the variables. If the F-statistic falls below the lower critical bounds, it 

suggests no cointegration. If the F-statistic falls within the bounds, the test is inconclusive.  
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3.4.2 Short-run Coefficient Estimation 

The short-run elasticity will be estimated through a typical dynamic short-run function as 

specified below. 

𝛥𝐼𝑌𝑡 = 𝑙0 + ∑ 𝜒𝑗𝛥𝑙𝐶𝑂2𝑡−𝑗
4
𝑗=1 + ∑ 𝜃𝑗𝛥𝑙𝑃𝑅𝑡−𝑗

4
𝑗=1 + ∑ 𝜋𝑗𝛥𝑙𝑇𝐸𝑡−𝑗

4
𝑗=1 + ∑ 𝜕𝑗𝛥𝑙𝑃𝐷𝑡−𝑗

4
𝑗=1 +

∑ ∅𝑗𝛥𝑙𝑅𝑅𝑡−𝑗
4
𝑗=1 + 𝜁𝐸𝐶𝑇 + 𝜇𝑡        (8) 

Where Y and tECT   is represents the yields of crop and the error correction term, 

respectively, where tECT   is equivalent to the lagged value of the error term from the 

equation (8), K is the number of lags used. 

3.4.3  Long-run Elasticity Estimation 

In this study, the long-run equilibrium function is specified as: 

𝛥𝐼𝑌𝑡 = 𝑙0 + 𝛼1𝑙𝐶𝑂2𝑡 + 𝛼2𝑙𝑃𝑅𝑡 + 𝛼3𝑙𝑇𝐸𝑡 + 𝛼4𝑙𝑃𝐷𝑡 + 𝛼5𝑙𝑅𝑅𝑡 + 𝜕𝑡   (9) 

Where t is the error term. 

The test involves calculating an F-statistic and comparing it to critical bounds based on the 

estimated model. If the calculated F-statistic is higher than the upper critical bound, it suggests 

a strong likelihood of a long-run relationship between the variables. Conversely, if the F-

statistic is lower than the lower critical bound, it indicates a lack of evidence for a long-run 

relationship. If a long-run relationship is established, the ARDL bounds test allows for the 

estimation of both long-run and short-run coefficients.  

The long-run coefficients represent the equilibrium relationship between the variables, while 

the short-run coefficients capture the dynamic adjustments towards the long-run equilibrium. 

The statistically significant and negative sign of the  𝐸𝐶𝑇𝑡−1 coefficient (ϑ) implies that any 

short-run disequilibrium among the dependent variable and some independent variables will 

converge back to the long-term equilibrium association. However, if a long-run relationship is 

not found in an ARDL model, it is generally not recommended to proceed with estimating 

short-run coefficients as the whole premise of the ARDL approach is to analyze the short-run 

dynamics within the context of a long-run equilibrium; without that equilibrium, the short-run 

estimates would not have a meaningful interpretation. 

3.4.4  Post Estimation Diagnostic Tests 

After estimating the ARDL model, post-estimation analysis would focus on verifying its 

validity and reliability. This process involves checking for autocorrelation, heteroskedasticity, 

and normality of residuals, as well as assessing the model's stability. Post-estimation tests also 

include diagnostic checks for model misspecification, using the Ramsey RESET test to detect 

omitted variables or functional form misspecification. Additionally, the study used the 

CUSUM (Cumulative Sum) and CUSUM of squares plots to assess the stability of parameters 

in the ARDL regression model. A CUSUM and CUSUM of squares plot checks for systematic 

changes and detects sudden changes from the constancy of the regression coefficients, 
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respectively. If both plots stay within the critical bounds (typically a 5% significance level), it 

suggests the model's coefficients are stable.  

4.0 Empirical Results and Discussion 

4.1 Data Description 

The standard deviation in relation to the mean revealed standard deviations for temperature 

and precipitation of 0.34 and 84.11, respectively, which are considered large in relation to the 

means of 21.32 and 1159, respectively.  Except for sorghum, which has a highly skewed 

distribution, wheat, precipitation, and natural resources rents are moderately skewed. At the 

same time, millet, maize, rice, CO2 emissions, temperature, and population density have 

relatively symmetric distributions. The Kurtosis values indicate that the distributions are 

similar to a normal distribution for maize, temperature, and natural resource rents. In contrast, 

the distribution has a sharper peak and heavier tails than a normal distribution for sorghum and 

precipitation, reflecting leptokurtic, indicating that outliers are more likely to be found in the 

tails. All the remaining variables are Platykurtic because the distribution has a flatter peak and 

thinner tails than a normal distribution. In the Jarque-Bera (JB) test results, except for sorghum, 

which deviates significantly from normality, the high p-value (> 0.05) suggests that the data in 

all the series are consistent with a normal distribution.  

Table 2: Data Description of the Variables 

Variable Mean Std. Dev Skewness Kurtosis JB (P-Value) Obs. 

Millet 1.176115 0.286504 0.099304 3.076088 0.077276 (0.9621) 41 

Maize 1.515376 0.292834 0.3082059 2.40203 1.259951(0.5326) 41 

Rice 1.865688 0.347717 0.181326 2.492863 0.66404(0.7175) 41 

Sorghum 1.176449 0.162984 1.498404 4.962106 21.9191(0.0002) 41 

Wheat 1.565049 0.5154649 0.525527 2.179993 3.035921(0.2192) 41 

CO2 89963218 27660610 -0.151772 2.096743 1.5512(0.4604) 41 

Precipitation 1158.915 84.11069 -0.740976 3.855998 5.003562(0.0819) 41 

Temperature 21.32317 0.340459 -0.459133 3.306536 1.60101(0.4491) 41 

Population Density 150.279 47.58652 0.3478919 1.878976 2.9739(0.2260) 41 

Natural Resources Rents  14.0578 6.978273  0.541953  3.062307 2.013674(0.365373)  41 

Source: Author’s computation 

4.2  Unit Root Test 

To test for the unit root, the study employed the Augmented Dickey-Fuller (ADF) test to 

determine whether each time series is stationary or non-stationary, i.e., whether its statistical 

properties (such as mean and variance) remain stable over time. The null hypothesis of the 

ADF test is that a unit root is present, implying non-stationarity, while the alternative 

hypothesis suggests the series is stationary. Table 3 shows the estimation results of the unit 

root test after applying the ADF stationarity test at a 5% critical value. The estimation results 

revealed that, except for maize, sorghum, precipitation, temperature, all the remaining 

variables were not stationary at the level but became stationary after first differencing a 5% 

critical value.  

 Table 3: Augmented Dickey-Fuller (ADF) Unit Root Test 

 

Variable 

 

Stationary test 

ADF test Statistic Test critical values (t-statistic)  

Decision t-Statistic Probability 1% level 5% level 10% level 
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ML @Level 

@1st Difference 

-2.950985 

-8.773001 

0.1589 

0.0000 

-4.219126 

-4.211868 

-3.533083 

-3.529758 

-3.198312 

-3.196411 

--- 

I(1) 

CC @Level 

@1st Difference 

-3.807126 

--- 

0.0264 

--- 

-4.205004 

--- 

-3.526609 

--- 

-3.194611 

--- 

I(0) 

--- 

RC @Level 

@1st Difference 

-2.133790 

-7.821893 

0.5120 

0.0000 

-4.205004 

-4.211868 

-3.526609 

-3.529758 

-3.194611 

-3.196411 

--- 

I(1) 

SG @Level 

@1st Difference 

-3.879022 

--- 

0.0223 

--- 

-4.205004 

--- 

-3.526609 

--- 

-3.194611 

--- 

I(0) 

--- 

WH @Level 

@1st Difference 

-2.922944 

-6.103492 

0.1665 

0.0001 

-4.205004 

-4.211868 

-3.526609 

-3.529758 

-3.194611 

-3.196411 

--- 

I(1) 

CO2 @Level 

@1st Difference 

-3.152104 

-7.596686 

0.1087 

0.0000 

-4.205004 

-4.211868 

-3.526609 

-3.529758 

-3.194611 

-3.196411 

--- 

I(1) 

PR @Level 

@1st Difference 

-5.583750 

--- 

0.0002 

--- 

-4.205004 

--- 

-3.526609 

--- 

-3.194611 

--- 

I(0) 

--- 

TE @Level 

@1st Difference 

-4.237016 

--- 

0.0094 

--- 

-4.211868 

--- 

-3.529758 

--- 

-3.196411 

--- 

I(0) 

--- 

PD @Level 

@1st Difference 

-1.727155 

-3.070794 

0.7183 

0.0784 

-4.234972 

-4.234972 

-3.540328 

-3.540328 

-3.202445 

-3.202445 

--- 

I(1) 

RR @Level 

@1st Difference 

-2.894057 

-7.429257 

0.1754 

0.0000 

-4.211868 

-4.219126 

-3.529758 

-3.533083 

-3.196411 

-3.198312 

--- 

I(1) 

Source: Author’s computation 

4.3 ARDL Bond Test for Cointegration 

The study employed the ARDL bounds test for cointegration to determine whether a long-run 

relationship exists between the time series of cereal crop yields, climate change, and 

demographic pressure variables. Table 3 presents evidence of cointegration in models 2, 3, and 

4, indicating that the variables for cereal crop yields, climate change, and demographic 

pressure exhibit a stable long-run relationship. The ARDL Bound test results for Models 1 and 

5 revealed inconclusive results, which indicate that the evidence for or against cointegration (a 

long-run relationship between the variables) is not strong enough to draw a definitive 

conclusion.  

Table 3: The Bond Test Results 

 

Variable 
Bonds Test Bonds Critical Values (5% level)  

Decision F-Statistic I(0) I(1) 
Model 1: Maize 2.917632 2.390 3.380 Inconclusive  
Model 1: Millet 4.289789 2.390 3.380 Cointegration  
Model 1: Rice 6.405625 2.390 3.380 Cointegration  

Model 1: Sorghum 14.618373 2.390 3.380 Cointegration  
Model 1: Wheat 3.091052  2.390 3.380 Inconclusive  

Note: I(0) and I(1) are respectively the stationary and non-stationary bounds. 

Source: Author’s computation 

4.4 ARDL Long run Coefficients 

Table 4 provides the long-run coefficients for the five ARDL models. The long-run coefficients 

represent the equilibrium relationship between variables. The coefficients indicate the average 

change in the crop yields (maize, millet, rice, sorghum, and wheat) for a one-unit change in 

carbon dioxide emissions, precipitation, temperature, population density, and natural resource 

rents when time subscripts are ignored. In other words, the coefficients describe the long-term 

impact of carbon dioxide emissions, precipitation, temperature, population density, and natural 

resource rents on crop yields, assuming the system has reached a stable state. Except for 
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precipitation, a one-unit change in the current and first lag of carbon dioxide emissions results 

in statistically significant average changes of 0.1% and -1.21% in sorghum and wheat yields, 

respectively. Second, a one-unit change in temperature results in a statistically significant 

average yield change of 5.5% in sorghum. Similarly, a one-unit change in population density 

revealed a statistically significant average change of -0.12% and 0.48% in sorghum and maize 

yields, respectively. Lastly, a one-unit change in natural resource rents results in statistically 

significant average changes of -0.36% and 0.05% in maize and sorghum yields, respectively. 

From the foregoing, a positive long-run coefficient suggests that an increase in either carbon 

dioxide emissions, precipitation, temperature, population density, or natural resource rents 

leads to an increase in the respective crop yields in the long run, and vice versa. Furthermore, 

the magnitude of the coefficient indicates the extent of this impact.  

Table 4: Long-run coefficients 

Coefficient 

Dependent Variable 

 Model 1: LCC Model 2: LML Model 3: LRC Model 4: LSG Model 5: LWH 

C -1.856 877.67 61.979 -19.67*** -12.321 

LCO2 -0.045 ---- ---- 0.100** ---- 

LCO2(-1) ---- 78.487 -1.0396 ---- -1.206* 

LPR ---- ---- ---- 0.2276 1.154 

LPR(-1) 1.733 -382.45 4.0969 ---- ---- 

LTE -3.667 ---- ---- ---- 8.436 

LTE(-1) ---- 196.73 -29.344 5.500*** ---- 

LPD ---- ---- ---- -0.116* 0.241 

LPD(-1) 0.479** -27.172 1.6317 ---- ---- 

LRR -0.360** ---- ---- 0.046* ---- 

LRR(-1) ---- 70.881 -1.6291 ---- -0.204 

R2 0.846312 0.843872 0.943495 0.690860 0.740326 

Adj. R2 0.791423 0.489036 0.854703 0.576364 0.610489 

F-statistic 

(P-value) 

15.4187  

(0.0000) 

2.3782  

(0.0673) 

10.6258 

(0.000022) 

6.033909 

(0.0001) 

5.701974 

(0.0001) 

Note: ***, **, and * represents significant level at 1%, 5%, and 10%, respectively 

Source: Author’s Computation 

4.5 ARDL-Error Correction Model 

Given the established cointegration and inconclusive results, the study reparameterized the 

ARDL models 1, 2, 3, 4, and 5 into an Error Correction Model (ECM) to capture the speed of 

adjustment towards the long-run equilibrium. In the case of the inconclusive ARDL 

cointegration test results, the study considers ECM estimation because the ARDL bounds test 

F-statistic falls within the bounds (inconclusive), suggesting a long-run relationship that 

describes an equilibrium association between variables over time, but not necessarily a 

cointegration relationship which is a specific statistical concept that identifies a long-run 

equilibrium between non-stationary variables whose linear combination results in a stationary 

series. In essence, cointegration implies a long-run relationship, but not all long-run 

relationships are cointegrated. 

Therefore, the ARDL model combines short- and long-run dynamics, and the ECM becomes 

a viable approach. That cereal crop, climate change, and demographic pressure variables may 

tend to return to a certain equilibrium over time, despite short-term fluctuations. The ECM and 

other coefficients provide insight into the short-run dynamics of the cereal crop, climate 
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change, and demographic pressure variables, showing how they deviate from their long-run 

relationship and adjust back towards equilibrium as presented in Table 5. Table 5 shows that 

all the ECM coefficients are statistically significant, suggesting deviations from the long-run 

equilibrium are corrected over time. This indicates a long-run relationship, even without a 

formal cointegration test confirming it in models 1 and 5. Table 5 provides the short run 

coefficients of the five models, the short-run coefficients represent the contemporaneous and 

lagged effects  of carbon dioxide emissions, precipitation, temperature, population density, and 

natural resource rents on the crop yields (maize, millet, rice, sorghum, and wheat), specifically 

within the short period before the system returns to long-run equilibrium. They capture how 

changes in climate and demographic variables influence crop yields in the immediate and near 

future, before the long-run relationship is fully established. The significant and negative ECT 

coefficients of -0.46%, -0.03%, -0.28%, -1.21%, and -0.5% for models 1, 2, 3, 4, and 5, 

respectively, indicate a strong tendency for the model to return to equilibrium. Except for 

sorghum, which has a very large negative value of -1.21%, indicating issues such as explosive 

time paths or overcorrection, all the ECM coefficients fall within the desirable range for the 

ECT, i.e., between -1 and 0, with a -1 signifying a one-period correction. According to the 

results in Table 5, while the current precipitation and population density have a positive 

influence on maize yields, the first lag coefficients of precipitation and population density have 

a negative influence on maize yields. Except for the first lag coefficient of natural resource 

rents, millet yields are being impacted negatively by the first lag coefficients of temperature, 

population density, and natural resource rents. Except for precipitation and natural resource 

rents, which have positive and negative influences, respectively, on rice yields, the first lag 

coefficients of CO2 emissions and temperature have a positive impact. In contrast, the first lag 

coefficients of population density have a negative influence on rice yields. Similarly, the 

current and first lag coefficients of temperature have a positive and negative influence, 

respectively, on sorghum yields. Only the lag coefficient of CO2 emissions and natural resource 

rents had impact on wheat yields. 

 

 

 

 

Table 5: Short-run coefficients 

Coefficients 

Dependent Variable 

Model 1: LCC Model 2: LML Model 3: LRC Model 4: LSG Model 5: LWH 

COINTEQ* -0.459*** -0.027*** -0.282*** -1.214*** -0.507*** 

D(LCO2) ---- ---- -0.080 ---- -0.242 

D(LCO2(-1)) ---- ---- 0.381*** ---- 0.754*** 

D(LPR) 0.475** 0.777 0.651*** ---- ---- 

D(LPR(-1)) -0.486** 8.308*** 0.147 ---- ---- 

D(LTE) ---- -0.800 1.095 3.125*** ---- 

D(LTE(-1)) ---- -7.540** 2.380** -1.725** ---- 

D(LPD) 71.378*** -59.40 -12.67 ---- ---- 

D(LPD(-1)) -59.85*** -211.43** 95.517** ---- ---- 
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D(LRR) ---- 0.470*** -0.120** ---- 0.141* 

D(LRR(-1)) ---- -1.075***  ---- ---- 

R2 0.561 0.863 0.862 0.809 0.562 

Adj. R2 0.510 0.710 0.752 0.786 0.475 

S.E. of Reg. 0.082 0.148 0.062 0.053 0.174 

F-statistic 

(P-value) 

10.87 

(0.00009) 

5.637 

(0.000) 

7.805 

(0.000) 

34.971 

(0.000) 

6.426 

(0.002) 

Note: ***, **, and * represents significant level at 1%, 5%, and 10%, respectively 

Source: Author’s Computation 

4.6 Post-estimation diagnostic Tests 

The probability values of 0.65, 0.44, 0.87, 0.93, and 0.57, which are greater than the 0.05 

critical value for the Jarque Bera test from models 1, 2, 3, 4, and 5, respectively, gave 

reasonable cause for the acceptance of the null hypothesis that the error term followed a normal 

distribution. The Breusch-Godfrey serial correlation LM test shows the absence of a serial 

correlation in models 1 through 5, as revealed by the results in Table 5 below. The probability 

value of the F-statistic confirms that the residuals were serially uncorrelated. The Ramsey 

RESET test results indicate that the models are not misspecified, as the p-values for all models 

are greater than 0.05. Similarly, the variance of the errors in the regression models is constant 

(homoscedasticity) or not (heteroscedasticity): the p-value is above the significance level. 

Therefore, the null hypothesis is not rejected, indicating no significant evidence of 

heteroscedasticity.  

Table 5: Post Estimation Tests 

Test Model: 1 Model: 2 Model: 3 Model: 4 Model: 5 

Normality 0.786 (0.675) 1.638 (0.44) 0.288(0.866) 0.153 (0.926) 1.107(0.575) 

Heteroscedasticity 1.101 (0.39) 0.747 (0.74) 0.461(0.950) 0.846 (0.591) 0.307(0.982) 

Serial Correlation 1.134 (0.34) 1.004 (0.40) 0.258(0.777) 0.117 (0.890) 0.034(0.967) 

Ramsey RESET 0.490 (0.63) 7.758 (0.019) 1.108(0.288) 1.423(0.167) 0.377(0.710) 

CUSUM Stable Stable Stable Stable Stable 

CUSUM of squares Stable Stable Stable Unstable Stable 

Source: Author’s Computations 

4.7 The CUSUM & CUSUM of Squares plots 

Except for model 4, which has a CUSUM of squares plot that crosses the critical bounds, 

indicating that the model's parameters are unstable and may require adjustments, such as 

adding a structural break or re-estimating the model with a different period. The results from 

Figures 2, 3, 4, and 5 obviously indicated that the five models were stable, and the CUSUM 

and CUSUM of squares lines were at the 5% significance line. The result is desirable as the 

entirety of the sample period of the study is stable. The sorghum results from Figure 4 indicated 

that the model was stable from 2004 to 2011, but showed some instability after the CUSUM 

of squares line exceeded the 5% significance line. The result is undesirable because the entirety 

of the study's sample period is not stable.  
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Figure 2: CUSUM & CUSUM of squares plot (Maize) 
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Figure 3: CUSUM & CUSUM of squares plot (Millet) 
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Figure 4: CUSUM & CUSUM of squares plot (Rice) 
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Figure 5: CUSUM & CUSUM of squares plot (Sorghum) 
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Figure 6: CUSUM & CUSUM of squares plot (Wheat) 

4.8 Summary of Major Findings 

The study employed the ARDL model and the ECM technique to investigate whether climate 

Change and Demographic Pressure Matter for Food Security in Nigeria using time series data 

from 1981 to 2021 for climate change (CO2 emissions, precipitation, temperature), 

demographic variables (population density and natural resource rents), and cereal crops (maize, 

millet, rice, sorghum, and wheat). The ARDL model results revealed that a long-run 

relationship exists between the variables: climate change, demographic variables, and cereal 

crop yields (millet, rice, and sorghum), with inconclusive cointegration results for Maize and 

wheat. Secondly, there is a positive influence of CO2 emissions and temperature, combined 

with natural resource rents, on sorghum yields. However, higher population density has a 

negative impact on sorghum production. The results also indicate that CO2 emissions have a 

negative impact on wheat yields. 

In the short run, while the current precipitation and population density have a positive impact 

on maize yield, the precipitation and population density from the previous year have a negative 

influence on maize yields. While the positive influence of precipitation and natural resource 

rents on millet production exists, last year's temperature, population density, and natural 

resource rents had a negative impact on millet production. On the contrary, the negative 

influence of last year's temperature, population density, and natural resource rents on millet 

production. Similarly, while natural resource rents negatively affect rice yields, precipitation 

has a positive influence on rice yields. Last year's temperature and population density also 

positively impact rice yields. The current temperatures positively and last year's temperatures 

negatively influence sorghum yields, while last year’s CO2 emissions positively influence 

wheat. The ECM coefficients are negative and significant, indicating that the cereal crop yields 

are adjusting towards their long-run equilibrium after a deviation. The coefficients of -0.46%, 

-0.03%, -0.28%, -1.21%, and -0.5% for maize, millet, rice, sorghum, and wheat, respectively, 

suggest the speed of these adjustments.  

5.0 Conclusion and Recommendation 

From the long-run findings, natural resource rents have a negative impact on maize yields, 

indicating a diversion of land from agricultural use. In contrast, population density has a 

positive effect on maize yields, suggesting encouragement of intensification. The study 

recommends a focus on optimizing resource use, improving access to inputs, and implementing 

sustainable agricultural practices tailored to local conditions. The combined positive influence 

of CO2 emissions and temperature, along with natural resource rents, can lead to increased 

sorghum yields. However, the higher population density negatively impacts sorghum 

production, creating a complex scenario of both potential benefits and challenges for this crop. 

This interplay necessitates strategic adaptation to optimize sorghum output in the face of a 

changing environment and growing population pressures. The study recommends that 

strategies should focus on optimizing sorghum cultivation practices, managing environmental 

stressors, and adapting to changing climatic conditions.  The negative influence of CO2 

emissions on wheat yields implies a reduction in food security, economic losses for farmers 
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and nations, and potential nutritional deficiencies in wheat products, alongside broader 

environmental and health concerns. The study recommends adopting climate-smart 

agricultural practices, optimizing fertilizer and energy use, developing heat-tolerant crop 

varieties, and implementing effective soil and water management strategies to mitigate the 

impacts of climate change. 

In the short run, current precipitation and population density have a positive impact on maize 

yields, indicating that adequate rainfall and optimal planting density are essential for 

maximizing production. However, high population density in conjunction with limited 

resources can lead to reduced per-plant yields despite overall higher demand.  On the contrary, 

last year's precipitation and population density had a negative impact on maize yields. This 

implies that reduced soil moisture from previous dry periods hinders current crop growth and 

that higher population density exacerbates resource competition or land availability 

constraints, leading to lower yields per unit area. The positive influence of precipitation and 

natural resource rents on millet production indicates a potential for immediate increases in food 

security and agricultural income, but also highlights the risk of unsustainable practices if 

resource rents are not managed judiciously, and the potential for neglect of other crucial 

economic sectors if over-reliance on millet and natural resources develops. On the contrary, 

there is a negative influence of last year's temperature, population density, and natural resource 

rents on millet production, which can lead to reduced yields, increased food insecurity, and 

potential economic strain, particularly for vulnerable populations in millet-dependent regions. 

Higher temperatures and erratic rainfall (often linked to the previous year's temperature 

fluctuations) directly impair crop growth cycles and reduce yields. At the same time, 

population density puts pressure on arable land and natural resources, potentially leading to 

unsustainable practices and a decline in soil fertility. Lower agricultural output resulting from 

these factors, combined with the negative impacts of natural resource rents, can exacerbate 

food insecurity and economic challenges. The study offers short-term recommendations, 

including enhancing access to credit and fertilizers, promoting the use of precision fertilizers, 

and adopting climate-smart agricultural practices. In the longer term, focusing on developing 

and disseminating climate-resilient and improved millet varieties is crucial.  

In the same vein, last year's temperature and population density had a positive influence on 

rice yields, implying that previous conditions, specifically warmer temperatures and higher 

population density, can lead to increased rice production in the current year, despite the 

potential long-term negative impacts of climate change on rice cultivation. The implications 

of the negative and positive influences of natural resource rents and precipitation, respectively, 

on rice yields highlight increased vulnerability and instability in rice production, particularly 

in resource-dependent economies like Nigeria, where fluctuations in resource extraction and 

rainfall patterns can significantly impact food security and livelihoods. Specifically, an 

increase in natural resource rents is associated with environmental degradation and potentially 

reduced agricultural productivity, whereas favourable precipitation can boost rice yields. The 

study recommendations focus on diversifying income sources, implementing adaptive farming 

practices, and optimising water management strategies to mitigate potential negative impacts 

of resource rent volatility and leverage beneficial precipitation patterns. Current temperatures 
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have a positive influence on sorghum yields, while last year's temperatures had a negative 

impact, implying that farmers face an immediate challenge due to current heat stress. However, 

the lingering effects of a cooler prior year's growing season may offer some short-term buffer 

or recovery potential for the crop's established state. This scenario highlights a complex 

interplay between immediate environmental conditions and the residual impact of past weather 

patterns on sorghum productivity. The study recommendations include managing for current 

optimal temperatures while mitigating potential negative impacts from cumulative heat stress 

and water demand carried over from the previous year, and preparing for future extreme heat 

events. 
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